Increased Kernel Number in Norin 10-Derived Dwarf Wheat: Evaluation of the Cause

Author:

Fischer RA,Stockman YM

Abstract

This study of the effect of major Norin 10 dwarfing genes (Rht1, Rht2) on kernel number in spring wheat emphasised three near-isogenic pairs of spring wheat, differing in the presence or absence of both genes. Plants were grown under controlled environment conditions with equal light intensities at their tops and were restricted to main stems by repeated tiller trimming. The dwarf wheats had a higher proportion of shoot dry weight in the spike at anthesis, an effect which field studies suggest is closely associated with their production of more kernels per unit land area. Stems of dwarf genotypes were somewhat shorter as early as 50 days before anthesis (i.e. before floral initiation) but relative differences became especially great commencing at 35 days before anthesis. Apex and spike lengths were never very different. A greater proportion of dry matter was distributed to leaf lamina from 50 days before anthesis until the end of lamina growth in dwarf wheats, while partitioning to stems was lower from 50 days before anthesis onwards. Partitioning to spikes was only higher in the 15 days preceding anthesis. Stem water-soluble carbohydrate (WSC) contents at anthesis were greater in dwarf wheats but maximum spike WSC contents reached at about 15 days before anthesis were lower. Spike morphogenesis including floret production and grain setting did not differ generally, except for a tendency with dwarf wheats for a longer floral initiation to anthesis interval and for more kernels per unit of spike weight at anthesis. The major unique feature of dwarf genotypes, the higher proportion of dry matter partitioned to the spike, appeared to be due to reduced competition from growing stems in dwarf wheats rather than intrinsic differences in the growth potential of their spikes.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3