Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland

Author:

PELTONEN-SAINIO P.,JAUHIAINEN L.,HAKALA K.

Abstract

Climate change offers new opportunities for Finnish field crop production, which is currently limited by the short growing season. A warmer climate will extend the thermal growing season and the physiologically effective part of it. Winters will also become milder, enabling introduction of winter-sown crops to a greater extent than is possible today. With this study we aim to characterise the likely regional differences in capacity to grow different seed producing crops. Prolongation of the Finnish growing season was estimated using a 0.5º latitude × 0.5º longitude gridded dataset from the Finnish Meteorological Institute. The dataset comprised an average estimate from 19 global climate models of the response of Finnish climate to low (B1) and high (A2) scenarios of greenhouse gas and aerosol emissions for 30-year periods centred on 2025, 2055 and 2085 (Intergovernmental Panel on Climate Change). Growing season temperature sums that suit crop growth and are agronomically feasible in Finland are anticipated to increase by some 140 °Cd by 2025, 300 °Cd by 2055 and 470 °Cd by 2085 in scenario A2, when averaged over regions, and earlier sowing is expected to take place, but not later harvests. Accordingly, the extent of cultivable areas for the commonly grown major and minor crops will increase considerably. Due to the higher base temperature requirement for maize (Zea mays L.) growth than for temperate crops, we estimate that silage maize could become a Finnish field crop for the most favourable growing regions only at the end of this century. Winters are getting milder, but it will take almost the whole century until winters such as those that are typical for southern Sweden and Denmark are experienced on a wide scale in Finland. It is possible that introduction of winter-sown crops (cereals and rapeseed) will represent major risks due to fluctuating winter conditions, and this could delay their adaptation for many decades. Such risks need to be studied in more detail to estimate timing of introduction. Prolonged physiologically effective growing seasons would increase yielding capacities of major field crops. Of the current minor crops, oilseed rape (Brassica napus L.), winter wheat (Triticum aestivum L.), triticale (X Triticosecale Wittmack), pea (Pisum sativum L.) and faba bean (Vicia faba L.) are particularly strong candidates to become major crops. Moreover, they have good potential for industrial processing and are currently being bred. Realisation of increased yield potential requires adaptation to 1) elevated daily mean temperatures that interfere with development rate of seed crops under long days, 2) relative reductions in water availability at critical phases of yield determination, 3) greater pest and disease pressure, 4) other uncertainties caused by weather extremes and 5) generally greater need for inputs such as nitrogen fertilisers for non-nitrogen fixing crops.;

Publisher

Agricultural and Food Science

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3