Abstract
Silindir içinde yanma sonu oluşan yüksek basınç ve sıcaklıktaki gazlar yapısal ve termal yüklere neden olmaktadır. Termal yüke maruz kalan piston, çalışma sırasında sıcaklık değişimleri nedeniyle termal gerilmelere de maruz kalmaktadır. Bu çalışmada, Renault F8Q706 motoru için seçilen 3 farklı piston malzemesi için sıcaklık dağılımı, 2500 dk-1 motor hızında ve tam yük koşullarında sonlu elemanlar metodu (SEM) hesaplanmıştır. Bu piston malzemeleri alüminyum alaşım-6061, yapısal çelik ve magnezyum alaşım-AZ91D’ dır. Analizlerde, yanma sonu yüksek basınç ve sıcaklığa maruz kalan piston yüzeyleri incelenmiştir. Hesaplamalarda silindir içi sınır şartları, bu motor için 1-Boyutlu (1B) olarak Ricardo-Wave yazılımı ile oluşturulan motor modelinden ve literatürden alınmıştır. Pistonun 3-Boyutlu (3B) çizimi SolidWorks yazılımında ve SEM analizleri ANSYS Steady State Thermal modülünde yapılmıştır. Analizler sonunda, pistonun yüzey sıcaklıkları ile piston yüzeyi ve komşuluğundaki gazların ısı transfer performansları hesaplanmıştır. Analizlerde, 1B motor modelinde hesaplanan silindir içi yanma sonu ortalama gaz sıcaklığı 1238,8 K iken, yapısal çelikte 1310,4 K ve magnezyum alaşım-AZ91D’ de ise 1372,9 K olarak hesaplanmıştır. Bu sıcaklıklar, kullanılan her malzeme için benzer sıcaklık dağılımı göstererek, yanmaya direkt maruz kalan piston üst yüzeyi ve hemen alt yüzeyinde en yüksek değerlerde, piston etek bölgesinde ise en az değerlerde hesaplanmıştır. Piston malzemesi olarak kullanılan alüminyum alaşım-6061 malzemesinin pistondaki ısıl yayılımı arttırdığı görülmüştür.
Publisher
Afyon Kocatepe University
Reference31 articles.
1. Ashby, M., 2021. Material property data for engineering materials. Ansys Education Resources.
2. Abdel-Rahman, A., A., 1998. On the emissions from internal combustion engines: A Review. International Journal of Energy Research, 22, 483-513.
3. Abuşoğlu, A., and Kanoğlu, M., 2009. Emission characteristics analysis of diesel engine powered cogeneration. Journal of Thermal Science and Technology, 29, 45-53.
4. Aktaş, F., 2022. Numerical investigation of equivalence ratio effects on a converted diesel engine using natural gas. Journal of Energy Resources Technology, 236, 1949-1963.
5. Baker, D. M., Assanis, D. N., 1994. A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Applied Mathematical Modeling, 18(11), 590-601. https://doi.org/10.1016/0307-904X(94)90317-4