Numerical Modelling of Myocardial Infarction. I. Analysis of Spatiotemporal Aspects of the Local Inflammatory Response

Author:

Voropaeva O.F.,Tsgoev Ch.A.

Abstract

The results of numerical modelling of the necrotic death of myocardial cells and immune response dynamics in type II ischemic infarction are presented. The initial conditions were consistent with the experimental data. The adopted minimal mathematical model focused on the balance of pro- and anti-inflammatory factors of aseptic inflammation and their influence on the process of cardiomyocyte death. The issue of the formation of nonlinear dynamic structures in the adopted reaction-diffusion system of equations in the absence of convective terms has been examined. It is shown that a stable localization of the solution of the initial-boundary value problem within the spatial region of practically unchanged size is observed in a fairly wide range of parameters of the initial conditions set in the form of bell-shaped finite functions. Qualitative properties of solutions allow biological interpretation. Within the framework of the adopted model, we considered several important examples and, on this basis, described a typical scenario of a heart attack with a favorable outcome. We have studied the most general patterns of the formation of demarcation inflammation near a large necrosis focus in a typical acute infarction scenario, taking into account individual differences in the topology of the coronary vascular network and the topography of the infarction. The adequacy of the results is confirmed by quantitative and qualitative agreement with a fairly wide range of experimental data on the dynamics of infarction in the left ventricle of the mouse heart.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3