Numerical Modeling of Myocardial Infarction in Multivessel Coronary Lesion. I. Analysis of Some Model Scenarios

Author:

Voropaeva O.F.,Tsgoev Ch.A.

Abstract

The study of the inflammatory phase of acute myocardial infarction in multivessel coronary lesion was performed using the methodology of mathematical modeling. The minimal reaction-diffusion mathematical model is focused on the description of the functional M1/M2 polarization of macrophages and the influence of factors of aseptic inflammation on the process of cardiomyocyte death. The initial conditions and dynamics of the process in the infarction nucleus are assumed to be consistent with laboratory measurement data. The nature of the spatiotemporal distribution of substances (cell populations and inflammatory mediators) and the features of the formation of nonlinear dynamic structures of demarcation inflammation are studied using model examples. The patterns of functioning of the basic mechanisms of the inflammatory response are analyzed, and the role of the main inflammatory mediators is evaluated. The previously obtained estimates of the effectiveness of anti-inflammatory therapeutic strategies based on cytokine management and macrophage polarization in complex heart attack scenarios with multivessel coronary lesion have been confirmed. The research results allow us to consider the accepted reaction-diffusion model with constant diffusion coefficients as an example of a formal mathematical description of an active environment in which dissipative (diffusion) and local biochemical processes compete with each other, as well as the pro-inflammatory link of innate immunity opposes the anti-inflammatory one. The ability of macrophages to functionally M1/M2 polarization and reprogramming plays a crucial role in this competition.The adequacy of the research results is confirmed by quantitative and qualitative agreement with experimental data.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3