The influence of climatic characteristics and values of NDVI at soybean yield (on the example of the districts of the Primorskiy region)

Author:

Stepanov Aleksey,Aseyeva Tat’yana,Dubrovin Konstantin

Abstract

Abstract. The relevance of research. Soybean is one of the key crops in world agriculture; in recent years, soybean production has been actively developing in the Russian Far East. It is necessary to predict yield to solve problems associated with soybean production, including the planning of sown areas and export operations. The purpose of this study is: to determine the factors affecting yield, to establish the relationship between these indicators and yield, and to evaluate the accuracy of the model. Research methods. We examined climatic features and remote Earth sensing indicators of Khankayskiy, Khorol’skiy, Mikhailovskiy and Oktyabr’skiy districts of the Primorskiy region since 2008 to 2018. Meteorological characteristics of territories and values of vegetation index were obtained using the Vega Science system. Integral coefficients were additionally calculated and mutually correlating indicators were excluded from the regression model. The main result of the study is a multiple regression model, where yield is considered as a dependent variable, and the independent variables are: the maximum weekly NDVI, hydrothermal coefficient, duration of the growing season, average annual humidity, and aggregated temperature of the upper soil layer. Mean absolute percentage error of the model is 11.0 % for the Khankayskiy district, 4.8 % for the Khorol’skiy district, 9.5 % for the Oktyabr’skiy district, and 8.9 % for the Mikhailovskiy district. Scientific novelty and practical relevance. A regression model, which predict soybean yield, was developed. In general, the proposed model can be used to predict soybean yield, as well as to make managerial decisions at the regional level.

Publisher

Urals State Agrarian University

Reference20 articles.

1. Boyarskiy B. S., Hasegawa H., Lyude A. Demand for Russian soybean based on the needs of food industry in Japan // Scientific support of soybean: problems and prospects. Collection of scientific articles on materials of the International research and practice conference dedicated to the 50th anniversary of the foundation of the All-Russian Scientific Research Institute of Soybean. Blagoveshchensk, 2018. Pp. 36–41., Boyarskiy B. S., Hasegawa H., Lyude A. Demand for Russian soybean based on the needs of food industry in Japan // Scientific support of soybean: problems and prospects. Collection of scientific articles on materials of the International research and practice conference dedicated to the 50th anniversary of the foundation of the All-Russian Scientific Research Institute of Soybean. Blagoveshchensk, 2018. Pp. 36–41.

2. Gaso D. V., Berger A. G., Ciganda V. S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images // Computers and Electronics in Agriculture. 2019. Vol. 159. Pp. 75–83., Gaso D. V., Berger A. G., Ciganda V. S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images // Computers and Electronics in Agriculture. 2019. Vol. 159. Pp. 75–83.

3. Асеева Т. А., Терехова М. В. Рациональные приемы использования сельскохозяйственных земель в Хабаровском крае при возделывании сои // Дальний Восток: проблемы развития архитектурно-строительного комплекса. 2016. № 1. С. 168–171., Aseeva T. A., Terehova M. V. Racional'nye priemy ispol'zovaniya sel'skohozyaystvennyh zemel' v Habarovskom krae pri vozdelyvanii soi // Dal'niy Vostok: problemy razvitiya arhitekturno-stroitel'nogo kompleksa. 2016. № 1. S. 168–171.

4. Производство сои: прогноз на сезон 2017/18 [Электронный ресурс] // МНИАП. URL: http://мниап.рф/analytics/Proizvodstvo-soi-prognoz-na-sezon-2017-18 (дата обращения: 25.09.2019)., Proizvodstvo soi: prognoz na sezon 2017/18 [Elektronnyy resurs] // MNIAP. URL: http://mniap.rf/analytics/Proizvodstvo-soi-prognoz-na-sezon-2017-18 (data obrascheniya: 25.09.2019).

5. Минакир П. А. «Программная» экономика: Дальний Восток // Пространственная экономика. 2019. № 2. Т. 15. С. 7–16., Minakir P. A. «Programmnaya» ekonomika: Dal'niy Vostok // Prostranstvennaya ekonomika. 2019. № 2. T. 15. S. 7–16.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3