Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills

Author:

Straumfors A.1,Uhlig S.12,Eriksen G.S.2,Heldal K.K.1,Eduard W.1,Krska R.3,Sulyok M.3

Affiliation:

1. Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 8149 Dep., 0033 Oslo, Norway

2. Section for Chemistry and Toxicology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway

3. Centre for Analytical Chemistry, Department IFA, Tulln, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria

Abstract

Employees at grain elevators and compound feed mills are exposed to large amounts of grain dust during work, frequently leading to airway symptoms and asthma. Although the exposure to grain dust, microorganisms, β-1→3-glucans and endotoxins has been extensively studied, the focus on the mycotoxin content of grain dust has previously been limited to one or few mycotoxins. Our objective was therefore to screen settled grain dust from grain elevators and compound feed mills for fungal metabolites by LC/MS-MS and explore differences between work places, seasons and climatic zones. Seventy fungal metabolites and two bacterial metabolites were detected. Trichothecenes, depsipeptides, ergot alkaloids, and other metabolites from Fusarium, Claviceps, Alternaria, Penicillium, Aspergillus, and other fungi were represented. The prevalence of individual metabolites was highly variable, and the concentration of each metabolite varied considerably between samples. The prevalence and concentration of most metabolites were higher in grain elevators compared to compound feed mills. Differences between seasons and climatic zones were inconclusive. All samples contained multiple mycotoxins, indicating a highly complex pattern of possible inhalational exposure. A mean exposure of 20 ng/m3 of fungal metabolites was estimated, whereas a worst case scenario estimated as much as 10 ?g/m3. Although many of these compounds may be linked to toxicological and immunological effects through experimental or epidemiological studies, it still remains to be determined whether the detected concentrations implicate adverse health outcomes when inhaled.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3