Feeding black soldier fly larvae (Hermetia illucens) reared on organic rest streams alters gut characteristics of Atlantic salmon (Salmo salar)

Author:

Leeper A.12ORCID,Benhaïm D.3,Smárason B.Ö.2,Knobloch S.2,Òmarsson K.L.2,Bonnafoux T.2,Pipan M.4,Koppe W.2,Björnsdóttir R.5,Øverland M.1

Affiliation:

1. Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box, 1420 Ås, Norway.

2. Aquaculture Group, Department of Research and Innovation, Matís Ltd, Reykjavik, 12, Vínlandsleid 113, Reykjavík, Iceland.

3. Department of Aquaculture and Fish Biology, Hólar University, 551 í Hjaltadal, Hólar, Iceland.

4. Better Origins, Future Business Centre, Cambridge, CB42HY, United Kingdom.

5. University of Akureyri, Nordurslóð Akureyri, Iceland.

Abstract

The Atlantic salmon (Salmo salar) aquaculture industry is growing, and with it, the need to source and optimise sustainable ingredients for aquafeeds. Black soldier fly (BSF) larvae (Hermetia illucens) have received increasing research attention since they are a good source of protein that can efficiently convert a wide range of low-value organic material into valuable resources. This study investigated the impact of three differently processed BSF meals, an untreated BSF diet (BSFC+), a dechitinated BSF diet (BSFC-) and a fermented BSF diet (BSFC+P+) at a 10% inclusion level replacing fish meal in a fish meal control (FM) and a marine and soy protein concentrate based control diet (SPC). Growth performance, gut microbiome and gut histology of salmon fry was assessed. The inclusion and processing methods of BSF showed no adverse impacts on either growth performance or gut histology. However, the gut microbiome of fish was significantly altered by both the protein source and the processing method of the BSF larvae. Fish fed BSFC+, had an increased diversity and evenness of the community compared with conventional protein sources alone, and compared with the other BSF processing methods. However, control diets had a greater presence of lactic acid bacteria and genera associated with faster growing hosts. Fish fed BSF had a high relative abundance of the genus, Exiguobacterium, a chitin-degrading bacterium and in BSFC+P+ fed fish this bacterium completely dominated the community, indicating the presence of dysbiosis. Future studies should determine, why Exiguobacterium has dominated the community for the BSFC+P+ diet, and if it provides a digestive function to the host and identify bacteria that are indicators of optimal host performance and resilience. The results confirmed that BSF is a promising fish meal replacement for salmon, and it demonstrated that BSFC+ has a potential prebiotic impact on the gut microbiome of Atlantic salmon.

Publisher

Wageningen Academic Publishers

Subject

Insect Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3