Comparison of rectal and tympanic membrane temperature in healthy exercising dogs

Author:

Hall E.J.1,Carter A.J.1

Affiliation:

1. School of Animal, Rural and Environmental Sciences, Nottingham Trent University – Brackenhurst Campus, Southwell, Nottinghamshire, NG25 0QF, United Kingdom.

Abstract

The ability to monitor body temperature in athletes at risk of hyperthermia is essential in all species. Currently, the only commonly accepted temperature monitoring site in dogs is the rectum. This is impractical in field situations as it takes time, requires additional handlers to restrain the dog and is not tolerated by all animals. Tympanic membrane temperature (TMT) monitoring may provide a rapid measure of body temperature to facilitate identification of heat stress and heat stroke in canine athletes. In human studies, TMT diverges from rectal temperature (RT) as body temperature increases during exercise induced hyperthermia so is not recommended for monitoring human athletes. If the same divergence occurs in dogs, TMT may not be suitable for use when monitoring the temperature of canine athletes. The aim of the study was to determine if TMT diverged from RT following exercise in healthy dogs. 24 healthy dogs were recruited to the study. Body temperature was measured using a veterinary auricular infrared thermometer to record TMT and an electric predictive rectal thermometer. Temperatures were recorded pre- and post-exercise in a non-clinical setting, familiar to the dogs. The mixed model approach showed that exercise had no effect on the difference between RT and TMT (F(1,201)=0.026, P=0.872). The overall mean difference of RT minus TMT was 0.39 °C (n=116). 68.4% of readings fell within the accepted 0.5 °C difference in temperature recording method. In line with previously reported TMT to RT comparison studies in dogs, this study found that TMT measured consistently lower than RT. Using a correction factor of 0.4 °C minimised the difference. The hypothesis that dogs would show greater differences between TMT and RT following exercise was not supported, suggesting that TMT could be used to monitor body temperature in exercising dogs where RT is not possible.

Publisher

Wageningen Academic Publishers

Subject

Physiology (medical),Veterinary (miscalleneous),Orthopedics and Sports Medicine,Physiology,Biochemistry,Endocrinology, Diabetes and Metabolism,Biophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3