Removal of ochratoxin A by a carboxypeptidase and peptides present in liquid cultures of Bacillus subtilis CW14

Author:

Hu H.N.1,Jia X.1,Wang Y.P.1,Liang Z.H.123

Affiliation:

1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R.

2. Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R.

3. The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China P.R.

Abstract

Ochratoxin A (OTA) is an important mycotoxin that contaminates a variety of agricultural products. The cell-free supernatant of Bacillus subtilis CW14 liquid cultures were reported previously to be capable of removing OTA efficiently. In this work, we examined several substances that are probably involved in this removal of OTA using in vitro experiments. The strain CW14 culture supernatant that was separated by ultrafiltration showed that the fractions collected at >10 kDa and <3 kDa had a significant ability to reduce OTA (84.9 and 74.8%, respectively) when incubated with 6 μg/ml OTA at 37 °C for 24 h. A putative metalloenzyme was responsible for the activity of the >10-kDa fraction, which was confirmed by the detrimental effects of heat treatments or addition of SDS, proteinase K, or EDTA. Subsequently, a carboxypeptidase (CP) gene that was likely related to the enzymatic conversion of OTA by the >10-kDa fraction was cloned from the B. subtilis CW14 genome, and over-expressed in Escherichia coli. The recombinant CP degraded 71.3% of OTA at 37 °C for 24 h, and ochratoxin α (OTα) was confirmed as a degradation product. From the <3-kDa fraction, some small peptides (1.7 kDa >Mw >0.7 kDa) were purified and decreased OTA by 45.0% under the same conditions, but no product was detected. These peptides were presumed to be capable of binding OTA due to their affinity with the OTA molecule, and the OTA-peptide complexes escaped from the extraction procedures for OTA quantification. These results indicated there was a probable synergistic effect that was involved in removal of OTA by the strain CW14 culture supernatant, which included enzymatic degradation by a CP and physical adsorption by some small peptides.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3