Regulation of TLR4, p38 MAPkinase, IκB and miRNAs by inactivated strains of lactobacilli in human dendritic cells

Author:

Giahi L.12,Aumueller E.1,Elmadfa I.1,Haslberger A.G.1

Affiliation:

1. Faculty of Life Sciences, Department of Nutritional Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

2. Reproductive Biotechnology Research Center, Avicenna Research Institute (ACECR), P.O. Box 19615, 1177 Tehran, Iran

Abstract

Strain specific properties of probiotics in providing supportive health effects in the immune system and the gastrointestinal tract have been widely investigated in vivo and in vitro. However, the underlying responsible mechanism is poorly described. By unravelling the probiotic-induced responses in a complex network of interacting signalling pathways, we investigated the effect of heat-inactivated Lactobacillus rhamnosus GG (LGG) and Lactobacillus delbrueckii subsp. bulgaricus (L.del) on the expression of TLR4 and signalling factors such as p38 MAPK and I?B at transcription level in human monocyte-derived dendritic cells (DCs). Our findings demonstrated that even inactivated probiotic strains can affect TLR4 expression in a down-regulatory direction as with lipopolysaccharides after 12 hours. LGG significantly down-regulated expression of p38 while I?B expression was significantly reduced in L.del-treated DCs. Moreover, we found these Lactobacillus strains could even modify the immune response at post-transcriptional level by modifying miRNAs expression. Based on our results LGG induced a significant down-regulatory effect on miR-146a expression which is known as a novel fine negative regulator of immune response targeting NFκB. On the other hand, miR-155 was up-regulated by LGG which is consistent with down-regulation of p38 and in LGG-treated DCs. These findings provide genetic and epigenetic explanations for the responsible underlying mechanisms by which probiotics influence immune response by targeting DCs.

Publisher

Wageningen Academic Publishers

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3