Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance

Author:

Chen Z.-Y.1,Rajasekaran K.2,Brown R. L.2,Sayler R. J.3,Bhatnagar D.2

Affiliation:

1. Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, LA 70803, USA

2. Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA

3. Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

Maize (Zea mays L.) is one of the major crops susceptible to Aspergillus flavus infection and subsequent aflatoxin contamination. Many earlier studies indicated the roles of kernel proteins, especially constitutively expressed proteins, in maize resistance to A. flavus infection and aflatoxin production. In this review, we examined the past and current efforts in identifying maize genes and proteins from kernel, rachis, and silk tissues that may play an important role in resistance to A. flavus infection and aflatoxin contamination, as well as the efforts in determining the importance or involvement of them in maize resistance through biochemical, molecular and genetics studies. Through these studies, we gained a better understanding of host resistance mechanism: resistant lines appear to either express some stress-related and antifungal proteins at higher levels in endosperm, embryo, rachis and silk tissues before A. flavus infection or induce the expression of these proteins much faster compared to susceptible maize lines. In addition, we summarised several recent efforts in enhancing maize resistance to aflatoxin contamination using native genes from maize or heterologous and synthetic genes from other sources as well as from A. flavus. These efforts to either suppress A. flavus growth or aflatoxin production, have all shown some promising preliminary success. For example, maize plants transformed with an ?-amylase inhibitor protein from Lablab purpurea showed reduced aflatoxin levels by 56% in kernel screening assays. The antifungal potentials of transgenic maize plants expressing synthetic lytic peptides, such as cecropin-based D4E1 or tachyplesin-based AGM peptides with demonstrated anti-flavus activity (IC50 = 2.5 to 10 ?M), are yet to be assayed. Further investigation in these areas may provide a more cost-effective alternative to biocontrol in managing aflatoxin contamination in maize and other susceptible crops.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3