Effect of pydiflumetofen on Gibberella ear rot and Fusarium mycotoxin accumulation in maize grain

Author:

Eli K.1,Schaafsma A.W.1,Limay-Rios V.1,Hooker D.C.1

Affiliation:

1. Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada.

Abstract

In Ontario, Canada, Fusarium graminearum Schwabe causes Gibberella ear rot (GER) in maize, resulting in the accumulation of mycotoxins, mainly deoxynivalenol (DON), DON-3-glucoside (DON-3G) and zearalenone (ZEN) in infected kernels. Fungicides can be an important tool for managing GER and DON and other Fusarium mycotoxins in maize. Until recently, all fungicides available to growers were triazoles, thus no resistance management strategy through fungicide use was possible. In this study, a novel carboxamide fungicide active ingredient (pydiflumetofen) was evaluated against conventional triazole fungicides and mixtures for: (1) effectiveness on mycotoxins (2) optimal application timing; and (3) efficacy of application, with and without an insecticide, under natural and inoculated-misted conditions. The best timing for fungicide application was at full silk, resulting in the highest reduction of GER symptoms and lowest accumulation of F. graminearum mycotoxins in harvested grain. DON and DON-3G concentrations were reduced by at least 50% with a fungicide application at full silk. Fungicide treatments did not affect fumonisin concentrations in grain. Pydiflumetofen (94 g active ingredients (AI)/ha) and fungicides containing pydiflumetofen (75-94 g AI/ha) were similar to standard triazole fungicides (prothioconazole at 200 g AI/ha and metconazole at 90 g AI/ha) for reducing GER and F. graminearum mycotoxins under misted-inoculated plots and commercial field conditions; as a result, we expect pydiflumetofen to be competitive with triazole-only chemistries in the marketplace, which should delay the onset of fungicide resistance.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3