Reduced rotavirus vaccine efficacy in protein malnourished human-faecal-microbiota-transplanted gnotobiotic pig model is in part attributed to the gut microbiota

Author:

Srivastava V.1,Deblais L.1,Huang H.-C.1,Miyazaki A.1,Kandasamy S.1,Langel S.N.1,Paim F.C.1,Chepngeno J.1,Kathayat D.1,Vlasova A.N.1,Saif L.J.1,Rajashekara G.1

Affiliation:

1. Food Animal Health Research Program, Ohio Agricultural Research Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.

Abstract

The low efficacy of human rotavirus (HRV) vaccines in low- and middle-income countries (LMIC) remains a major challenge for global health. Protein-calorie malnutrition (kwashiorkor) affects the gut microbiota and compromises immune development, leading to environmental enteropathy, vaccine failures, and increased susceptibility to enteric diseases in young children. Relationship between diet and reduced vaccine efficacy in developing countries is not well established; therefore, we investigated the interconnections between the host-microbiota-nutrition-HRV vaccine using HRV-vaccinated, human infant faecal microbiota (HIFM)-transplanted neonatal gnotobiotic pigs fed with a protein deficient or sufficient diet. The microbiota from faecal, intestinal (duodenum, ileum, jejunum, and colon), and systemic tissue (liver, spleen, and mesenteric lymph node [MLN]) samples was analysed before and after HRV challenge using MiSeq 16S rRNA sequencing. Overall, microbiota from deficient fed HIFM pigs displayed, compared to the sufficient group, significantly higher Shannon index, especially in the faeces and lower intestines; higher level of Proteus and Enterococcus, and lower level of Bifidobacterium, Clostridium, and Streptococcus in the three types of samples collected (P<0.05); and higher unique operational taxonomic units (OTUs), especially in the systemic tissues. Further, the multivariate analysis between microbiota and immunologic data showed that 38 OTUs at the genus level correlated (r2≤0.5 or ≥-0.5; P<0.05) with at least one host immune response parameter (regulatory [Tregs and transforming growth factor-β], effectors [interferon (IFN)-γ+ CD4+ and CD8+ T cells, IFN-γ and interleukin (IL)-12], and inflammatory [tumour necrosis factor-α, IL-17 and IL-22]) and with opposite trends between diet groups. Differences described above were increased after HRV challenge. We demonstrated that a protein deficient diet affects the composition of the gut microbiota and those changes may further correlate with immune responses induced by HRV and perturbed by the deficient diet. Thus, our findings suggest that the reduced efficacy of HRV vaccine observed in Gn pig model is in part attributed to the altered microbiota composition.

Publisher

Wageningen Academic Publishers

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3