Current PCR-based methods for the detection of mycotoxigenic fungi in complex food and feed matrices

Author:

Rahman H. Ur123,Yue X.124,Yu Q.1235,Zhang W.126,Zhang Q.124,Li P.12345

Affiliation:

1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China P.R.

2. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China P.R.

3. Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China P.R.

4. Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China P.R.

5. National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China P.R.

6. Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, China P.R.

Abstract

Mycotoxins are toxic secondary fungal metabolites produced by certain types of filamentous fungi, such as Aspergillus, Fusarium, and Penicillium spp. Mycotoxigenic fungi and their produced mycotoxins are considered to be an important issue in food and feed safety due to their toxic effects like carcinogenicity, immunosuppression, neurotoxicity, nephrotoxicity, and hepatotoxicity on humans and animals. To boost the safety level of food and feedstuff, detection and identification of toxins are essential at critical control points across food and feed chains. Zero-tolerance policies by the European Union and other organizations about the extreme low level of tolerance of mycotoxins contamination in food and feed matrices have led to an increasing interest to design more sensitive, specific, rapid, cost-effective, and safer to use mycotoxigenic fungi detection technologies. Hence, many mycotoxigenic fungi detection technologies have been applied to measure and control toxins contamination in food and feed substrates. PCR-based mycotoxigenic fungi detection technologies, such as conventional PCR, real-time PCR, nested PCR, reverse transcriptase (RT)-PCR, loop-mediated isothermal amplification (LAMP), in situ PCR, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR DGGE), co-operational PCR, multiplex PCR, DNA arrays, magnetic capture-hybridization (MCH)-PCR and restriction fragment length polymorphism (RFLP), would contribute to our understanding about different mycotoxigenic fungi detection approaches and will enhance our capability about mycotoxigenic fungi identification, isolation and characterization at critical control points across food and feed chains. We have assessed the principles, results, the limit of detection, and application of these PCR-based detection technologies to alleviate mycotoxins contamination problem in complex food and feed substrates. The potential application of these detection technologies can reduce mycotoxins in complex food and feed matrices.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3