Quercetin protects the buffalo rat liver (BRL-3A) cells from aflatoxin B1-induced cytotoxicity via activation of Nrf2-ARE pathway

Author:

Wang X.1,Li L.1,Zhang G.1

Affiliation:

1. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R.

Abstract

Aflatoxin B1 (AFB1) is the most toxic mycotoxin widely presented in agricultural products, and the protective effect of quercetin (QUE), a natural antioxidant, against AFB1-induced cytotoxicity to the buffalo rat liver (BRL-3A) cells was investigated. With an IC50 of 23 μM, AFB1 induced a significant oxidative stress to BRL-3A cells evidenced by a dose-dependent reduction of mitochondria membrane potential (MMP), ATP content, and activities of endogenous antioxidant enzymes along with increased levels of reactive oxygen species (ROS) and lipid peroxidation biomarker of malondialdehyde (MDA). The activity of CYP1A2, the key enzyme to convert AFB1 to reactive AFB1 exo-8,9- epoxide, was also increased, which, probably in together with ROS, led to cell apoptosis with DNA fragmentation, chromatin condensation and increased lactate dehydrogenase release. After the BRL cells were pre-treated by low level QUE (2.5 and/or 5 μM) for 24 h and then exposed to AFB1, the activities of antioxidant enzymes including haeme oxygenase-1, glutathione S-transferase, superoxide dismutase, and the ratio of reduced to oxidised glutathione were significantly increased whereas the levels of intracellular ROS and MDA were reduced. The QUE pre-treatment also increased the levels of MMP, ATP and DNA integrity, and reduced the expression of apoptosis related genes of Bax and Caspase-3. The Western blotting study revealed increased content of phosphorylated Akt and nuclear NF-E2-related factor 2 (Nrf2), indicating an activation of Nrf2-ARE pathway in counteracting oxidative stress and cytotoxicity of AFB1. Thus, the QUE pre-treatment enhanced the anti-stress capacity of the cells through the activation of the Nrf2-ARE pathway, and QUE-based measures could be developed to ameliorate the toxicity caused by AFB1.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3