Affiliation:
1. BP Institute, University of Cambridge, Cambridge CB3 0EZ, United Kingdom;
2. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
Abstract
Understanding how turbulence leads to the enhanced irreversible transport of heat and other scalars such as salt and pollutants in density-stratified fluids is a fundamental and central problem in geophysical and environmental fluid dynamics. This review discusses recent research activity directed at improving community understanding, modeling, and parameterization of the subtle interplay between energy conversion pathways, instabilities, turbulence, external forcing, and irreversible mixing in density-stratified fluids. The conceptual significance of various length scales is highlighted, and in particular, the importance is stressed of overturning or scouring in the formation and maintenance of layered stratifications, i.e., robust density distributions with relatively deep and well-mixed regions separated by relatively thin interfaces of substantially enhanced density gradient.
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献