Ice Base Slope Effects on the Turbulent Ice Shelf–Ocean Boundary Current

Author:

Anselin J.12ORCID,Holland P. R.1,Jenkins A.3,Taylor J. R.2

Affiliation:

1. a British Antarctic Survey, Cambridge, United Kingdom

2. b Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

3. c Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom

Abstract

Abstract Efforts to parameterize ice shelf basal melting within climate models are limited by an incomplete understanding of the influence of ice base slope on the turbulent ice shelf–ocean boundary current (ISOBC). Here, we examine the relationship between ice base slope, boundary current dynamics, and melt rate using 3D, turbulence-permitting large-eddy simulations (LESs) of an idealized ice shelf–ocean boundary current forced solely by melt-induced buoyancy. The range of simulated slopes (3%–10%) is appropriate to the grounding zone of small Antarctic ice shelves and to the flanks of relatively wide ice base channels, and the initial conditions are representative of warm-cavity ocean conditions. In line with previous studies, the simulations feature the development of an Ekman boundary layer adjacent to the ice, overlaying a broad pycnocline. The time-averaged flow within the pycnocline is in thermal wind balance, with a mean shear that is only weakly dependent on the ice base slope angle α, resulting in a mean gradient Richardson number 〈Rig〉 that decreases approximately linearly with sinα. Combining this inverse relationship with a linear approximation to the density profile, we derive formulations for the friction velocity, thermal forcing, and melt rate in terms of slope angle and total buoyancy input. This theory predicts that melt rate varies like the square root of slope, which is consistent with the LES results and differs from a previously proposed linear trend. The derived scalings provide a potential framework for incorporating slope dependence into parameterizations of mixing and melting at the base of ice shelves. Significance Statement The majority of Antarctica’s contribution to sea level rise can be attributed to changes in ocean-driven melting at the base of ice shelves (the floating extensions of the Antarctic ice sheet). Turbulent ocean currents and melting are strongest where the ice base is steeply sloped, but few studies have systematically examined this effect. We use an idealized ice shelf–ocean model to examine how variations in ice base slope influence ocean mixing and ice melting. We derive a formula predicting that melting varies like the square root of the ice base slope, and this scaling is supported by the simulations. These results provide a potential framework for improving the representation of ice shelf melting in climate models.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Reference43 articles.

1. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows;Abkar, M.,2016

2. Impacts of warm water on Antarctic ice shelf stability through basal channel formation;Alley, K. E.,2016

3. Influence of shelf break processes on the transport of warm waters onto the eastern Amundsen Sea continental shelf;Azaneu, M.,2023

4. Ice-shelf ocean boundary layer dynamics from large-eddy simulations;Begeman, C. B.,2022

5. The vertical structure and entrainment of subglacial melt water plumes;Burchard, H.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3