X-Ray Flow Visualization in Multiphase Flows

Author:

Aliseda Alberto1,Heindel Theodore J.2

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA;

2. Center for Multiphase Flow Research and Education, Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA

Abstract

The use of X-ray flow visualization has brought a powerful new tool to the study of multiphase flows. Penetrating radiation can probe the spatial concentration of the different phases without the refraction, diffraction, or multiple scattering that usually produce image artifacts or reduce the signal-to-noise ratio below reliable values in optical visualization of multiphase flows; hence, X-ray visualization enables research into the three-dimensional (3D) structure of multiphase flows characterized by complex interfaces. With the commoditization of X-ray laboratory sources and wider access to synchrotron beam time for fluid mechanics, this novel imaging technique has shed light onto many multiphase flows of industrial and environmental interest under realistic 3D configurations and at realistic operating conditions (high Reynolds numbers and high volume fractions) that had defied study for decades. We present a broad survey of the most commonly studied multiphase flows (e.g., sprays, fluidized beds, bubble columns) in order to highlight the progress X-ray imaging has made in understanding the internal structure and multiphase coupling of these flows, and we discuss the potential of advanced tomography and time-resolved and particle tracking radiography for further study of multiphase flows.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3