Affiliation:
1. Department of Physics, School of Electrical and Computer Engineering, and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907;
Abstract
Among very-low-disorder systems of condensed matter, the high-mobility two-dimensional electron gas (2DEG) confined in aluminum gallium arsenide (AlGaAs)–gallium arsenide (GaAs) heterostructures holds a privileged position as a platform for the discovery of new electronic states driven by strong Coulomb interactions. Molecular beam epitaxy (MBE), an ultra-high vacuum (UHV), thin-film deposition technique, produces the highest quality 2DEGs and has played a central role in a number of discoveries that have at their root the interplay of reduced dimensionality, strong electron-electron interactions, and disorder. This review attempts to describe the latest developments in heterostructure design, MBE technology, and the evolution of our understanding of disorder that result in improved material quality and facilitate discovery of new phenomena at ever finer energy scales.
Subject
Condensed Matter Physics,General Materials Science
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献