Affiliation:
1. Beijing Computational Science Research Center, Beijing, China;
2. Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA;
Abstract
Localized surface plasmon resonances (LSPRs) in metallic nanostructures result in subwavelength optical confinement that enhances light–matter interactions, for example, aiding the sensitivity of surface spectroscopies. The dissipation of surface plasmons as electronic and vibrational excitations sets the limit for field confinement but also provides opportunities for photochemistry, photocatalysis, and photothermal heating. Optimization for either goal requires a deeper understanding of this photothermalization process. In this review, we focus on recent insights into the physics and dynamics governing photothermalization of LSPRs in metallic nanostructures, emphasizing comparisons between the steady-state behavior and ultrafast time-resolved studies. The differences between these regimes inform how to best optimize plasmonic systems for applications under relatively low-intensity, continuous illumination (e.g., sunlight).
Subject
Physical and Theoretical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献