Hot electron enhanced photoemission from laser fabricated plasmonic photocathodes

Author:

Martinez-Calderon Miguel1ORCID,Groussin Baptiste1,Bjelland Victoria12,Chevallay Eric1,Fedosseev Valentin N.1,Himmerlich Marcel1,Lorenz Pierre3,Manjavacas Alejandro4,Marsh Bruce A.1,Neupert Holger1,Rossel Ralf E.1,Wuensch Walter1,Granados Eduardo1ORCID

Affiliation:

1. CERN, European Organization for Nuclear Research , 1211 Geneva , Switzerland

2. Department of Physics , NTNU–Norwegian University of Science and Technology , NO-7491 Trondheim , Norway

3. Department of Ultra-Precision Surfaces , Leibniz Institute of Surface Engineering (IOM) , Permoserstr. 15, 04318 Leipzig , Germany

4. Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas , 28006 Madrid , Spain

Abstract

Abstract Photocathodes are key elements in high-brightness electron sources and ubiquitous in the operation of large-scale accelerators, although their operation is often limited by their quantum efficiency and lifetime. Here, we propose to overcome these limitations by utilizing direct-laser nanostructuring techniques on copper substrates, improving their efficiency and robustness for next-generation electron photoinjectors. When the surface of a metal is nanoengineered with patterns and particles much smaller than the optical wavelength, it can lead to the excitation of localized surface plasmons that produce hot electrons, ultimately contributing to the overall charge produced. In order to quantify the performance of laser-produced plasmonic photocathodes, we measured their quantum efficiency in a typical electron gun setup. Our experimental results suggest that plasmon-induced hot electrons lead to a significant increase in quantum efficiency, showing an overall charge enhancement factor of at least 4.5 and up to 25. A further increase in their efficiency was observed when combined with semiconductor thin-films deposited over the laser processed surfaces, pointing at potential pathways for further optimization. We demonstrate that simple laser-produced plasmonic photocathodes outperform standard metallic photocathodes, and can be directly produced in-situ at the electron gun level in vacuum environments and without any disruptive intervention. This approach could lead to unprecedented efficient and continuous operation of electron sources, and is useful in many applications across scientific disciplines requiring high average and peak current electron beams.

Funder

Fundacion BBVA

Ministerio de Ciencia e Innovacion

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3