Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation

Author:

Jun Young-Shin1,Zhu Yaguang1,Wang Ying1,Ghim Deoukchen1,Wu Xuanhao2,Kim Doyoon1,Jung Haesung3

Affiliation:

1. Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri;, , , ,

2. Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut;

3. School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, South Korea;

Abstract

All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces, expand by monomeric growth and oriented attachment, and undergo phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can affect their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical andnonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and growth of nanoparticles.

Publisher

Annual Reviews

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3