Affiliation:
1. Bullard Labs, Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, United Kingdom;
Abstract
Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60–80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to alignment of hcp (hexagonal close-packed) iron crystals, aligned either during solidification or by deformation afterward. The existence of hemispherical variations used to be controversial, but there is now strong evidence from both seismic body wave and normal mode observations, showing stronger anisotropy, less attenuation, and a lower isotropic velocity in the western hemisphere. Two mechanisms have been proposed to explain the hemispherical pattern: either (a) inner core translation, wherein one hemisphere is melting and the other is solidifying, or (b) thermochemical convection in the outer core, leading to different solidification conditions at the inner core boundary. Neither is (yet) able to explain all seismically observed features, and a combination of different mechanisms is probably required.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献