Author:
Park Yohan,Wakamatsu Tatsuya,Azuma Shintaro,Nishihara Yu,Ohta Kenji
Abstract
AbstractStudying the anisotropic physical properties of hexagonal closed-packed (hcp) iron is essential for understanding the properties of the Earth’s inner core related to the preferred orientation of the inner core materials suggested by seismic observations. Investigating the anisotropic physical properties of hcp iron requires (1) the synthesis of hcp iron samples that exhibit several distinctive types of strong lattice preferred orientation (LPO) and (2) the quantitative LPO analysis of the samples. Here, we report the distinctive LPO of hcp iron produced from single-crystal body-centered cubic (bcc) iron compressed along three different crystallographic orientations ([100], [110], and [111]) in a diamond anvil cell based on synchrotron multiangle X-ray diffraction measurements up to 80 GPa and 300 K. The orientation relationships between hcp iron and bcc iron are consistent with the Burgers orientation relationship with variant selection. We show that the present method is a way to synthesize hcp iron with strong and characteristic LPO, which is beneficial for experimentally evaluating the anisotropic physical properties of hcp iron.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC