What Models Tell Us About the Evolution of Carbon Sources and Sinks over the Phanerozoic

Author:

Goddéris Y.1,Donnadieu Y.2,Mills B.J.W.3

Affiliation:

1. Géosciences Environnement Toulouse, CNRS–Université de Toulouse III, Toulouse, France;

2. Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, CNRS–Aix Marseille Université, Aix-en-Provence, France

3. School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Abstract

The current rapid increase in atmospheric CO2, linked to the massive use of fossil fuels, will have major consequences for our climate and for living organisms. To understand what is happening today, it is informative to look at the past. The evolution of the carbon cycle, coupled with that of the past climate system and the other coupled elemental cycles, is explored in the field, in the laboratory, and with the help of numerical modeling. The objective of numerical modeling is to be able to provide a quantification of the processes at work on our planet. Of course, we must remain aware that a numerical model, however complex, will never include all the relevant processes, impacts, and consequences because nature is complex and not all the processes are known. This makes models uncertain. We are still at the beginning of the exploration of the deep-time Earth. In the present contribution, we review some crucial events in coupled Earth-climate-biosphere evolution over the past 540 million years, focusing on the models that have been developed and what their results suggest. For most of these events, the causes are complex and we are not able to conclusively pinpoint all causal relationships and feedbacks in the Earth system. This remains a largely open scientific field. ▪ The era of the pioneers of geological carbon cycle modeling is coming to an end with the recent development of numerical models simulating the physics of the processes, including climate and the role of vegetation, while taking into account spatialization. ▪ Numerical models now allow us to address increasingly complex processes, which suggests the possibility of simulating the complete carbon balance of objects as complex as a mountain range. ▪ While most of the processes simulated by models are physical-chemical processes in which the role of living organisms is taken into account in a very simple way, via a limited number of parameters, models of the carbon cycle in deep time coupled with increasingly complex ecological models are emerging and are profoundly modifying our understanding of the evolution of our planet's surface.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3