Recent Advances in the Measurement Error Literature

Author:

Schennach Susanne M.1

Affiliation:

1. Department of Economics, Brown University, Providence, Rhode Island 02912;

Abstract

This article reviews recent significant progress made in developing estimation and inference methods for nonlinear models in the presence of mismeasured data that may or may not conform to the classical assumption of independent zero-mean errors. The aim is to cover a broad range of methods having differing levels of complexity and strength of the required assumptions. Simple approaches that form the elementary building blocks of more advanced approaches are discussed first. Then, special attention is devoted to methods that rely on readily available auxiliary variables (e.g., repeated measurements, indicators, or instrumental variables). Results relaxing most of the commonly invoked simplifying assumptions are presented (linear measurement structure, independent errors, zero-mean errors, availability of auxiliary information). This article also provides an overview of important connections with related fields, such as latent variable models, nonlinear panel data, factor models, and set identification, and applications of the methods to other fields traditionally unrelated to measurement error models.

Publisher

Annual Reviews

Subject

Economics and Econometrics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3