Embrace the noise: it is ok to ignore measurement error in a covariate, sometimes

Author:

Dong Hao1,Millimet Daniel L12ORCID

Affiliation:

1. Department of Economics, Southern Methodist University , Box 0496, Dallas, TX 75275-0496 , USA

2. IZA, Bonn, Germany

Abstract

Abstract In linear regression models, measurement error in a covariate causes ordinary least squares (OLS) to be biased and inconsistent. Instrumental variables (IV) is a common solution. While IV is also biased, it is consistent. Here, we undertake an asymptotic comparison of OLS and IV in the case where a covariate is mismeasured for ⌊Nδ⌋ of N observations with δ∈[0,1]. We show that OLS is consistent for δ<1 and is asymptotically normal and more efficient than IV for δ<0.5. Simulations and an application to the impact of body mass index on family income demonstrate the practical usefulness of this result.

Publisher

Oxford University Press (OUP)

Reference33 articles.

1. Weak instruments in instrumental variables regression: Theory and practice;Andrews;Annual Review of Economics,2019

2. Are employers discriminating with respect to weight?: European evidence using quantile regression;Atella;Economics & Human Biology,2008

3. Quantifying economic damages from climate change;Auffhammer;The Journal of Economic Perspectives,2018

4. The wage effects of obesity: A longitudinal study;Baum II;Health Economics,2004

5. Does body weight affect wages?: Evidence from Europe;Brunello;Economics & Human Biology,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3