Affiliation:
1. Active Adaptive Control Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
Abstract
This article provides an exposition of the field of adaptive control and its intersections with reinforcement learning. Adaptive control and reinforcement learning are two different methods that are both commonly employed for the control of uncertain systems. Historically, adaptive control has excelled at real-time control of systems with specific model structures through adaptive rules that learn the underlying parameters while providing strict guarantees on stability, asymptotic performance, and learning. Reinforcement learning methods are applicable to a broad class of systems and are able to produce near-optimal policies for highly complex control tasks. This is often enabled by significant offline training via simulation or the collection of large input-state datasets. This article attempts to compare adaptive control and reinforcement learning using a common framework. The problem statement in each field and highlights of their results are outlined. Two specific examples of dynamic systems are used to illustrate the details of the two methods, their advantages, and their deficiencies. The need for real-time control methods that leverage tools from both approaches is motivated through the lens of this common framework.
Subject
Artificial Intelligence,Human-Computer Interaction,Engineering (miscellaneous),Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献