Magnetohydrodynamics Simulations of Active Galactic Nucleus Disks and Jets

Author:

Davis Shane W.1,Tchekhovskoy Alexander2

Affiliation:

1. Department of Astronomy, University of Virginia, Charlottesville, Virginia 22904, USA;

2. Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60657, USA;

Abstract

There is a broad consensus that accretion onto supermassive black holes and consequent jet formation power the observed emission from active galactic nuclei (AGNs). However, there has been less agreement about how jets form in accretion flows, their possible relationship to black hole spin, and how they interact with the surrounding medium. There have also been theoretical concerns about instabilities in standard accretion disk models and lingering discrepancies with observational constraints. Despite seemingly successful applications to X-ray binaries, the standard accretion disk model faces a growing list of observational constraints that challenge its application to AGNs. Theoretical exploration of these questions has become increasingly reliant on numerical simulations owing to the dynamic nature of these flows and the complex interplay between hydrodynamics, magnetic fields, radiation transfer, and curved spacetime. We conclude the following: ▪  The advent of general relativistic magnetohydrodynamics (MHD) simulations has greatly improved our understanding of jet production and its dependence on black hole spin. ▪  Simulation results show both disks and jets are sensitive to the magnetic flux threading the accretion flow as well as possible misalignment between the angular momentum of the accretion flow and the black hole spin. ▪  Radiation MHD simulations are providing new insights into the stability of luminous accretion flows and highlighting the potential importance of radiation viscosity, UV opacity from atoms, and spiral density waves in AGNs.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3