Precession and split of tilted, geometrically thin accretion disk: an analytical study

Author:

Shen YeORCID,Chen Bin

Abstract

Abstract It has been observed that many relativistic jets display a kind of cork-screw-like precession. Numerical simulations has suggested that such kind of precession may originate from the precession of the disk. In this work, we introduce an analytical model to describe the precession and split of a tilted, geometrically thin disk. We consider the Lense-Thirring effect from the central (primary) black hole (BH) and the gravitational effect from the companion (secondary) BH far away from the center, both of which could induce the precession of the accretion disk around the spin axis of central black hole. We propose the splitting conditions that when the rate of viscous diffusion cannot catch up with the dynamical frequency at a certain layer of fluid, the disk would split into two parts which precess independently. We presume that the precessions of the inner and outer disks are in accord with the rotation and precession of jet, respectively. By matching the frequencies of the disks to the observed frequencies of jet in the cork-screw-like precession and considering the splitting condition, we are allowed to read four parameters, the innermost radius (r in), the outermost radius (r out) of the disk, the initial splitting radius (r sp,0), and the inflow speed magnitude (β), of the disk. We apply this model to OJ 287. Moreover, considering the inward shrinking of the disks, we find the time variation of the precession angle of jet. This time variation presents a unique feature of our model, which could be distinguishable in the future observation.

Publisher

IOP Publishing

Reference55 articles.

1. Active galactic nuclei: what's in a name?;Padovani;Astron. Astrophys. Rev.,2017

2. Jet precession and its observational evidence: The cases of 3C 345 and 3C 120;Caproni;Proceedings of the International Astronomical Union,2004

3. Precession in the inner jet of 3C 345;Caproni;Astrophys. J.,2004

4. Can long - term periodic variability and jet helicity in 3C 120 be explained by jet precession?;Caproni;Mon. Not. Roy. Astron. Soc.,2004

5. Observational evidence of spin-induced precession in active galactic nuclei;Caproni;Astrophys. J. Lett.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3