Affiliation:
1. Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;
Abstract
Precise, tunable emulsions and foams produced in microfluidic geometries have found wide application in biochemical analysis and materials synthesis and characterization. Superb control of the volume, uniformity, and generation rate of droplets and bubbles arises from unique features of the microscale behavior of fluid interfaces. Fluid interfaces confined within microfluidic channels behave quite differently than their counterparts in unbounded flows. Confinement inhibits capillary instabilities so that breakup occurs by largely quasi-static mechanisms. The three-dimensional flow near confined interfaces in rectangular geometries and feedback effects from resistance changes in the entire microfluidic network play important roles in regulating the interfacial deformation. Timescales for transport of surfactants and particles to interfaces compete with flow timescales at the microscale, providing further opportunity for tuning the interfacial coverage and properties of individual droplets and bubbles.
Cited by
416 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献