Dynamics of bubble formation on superhydrophobic surface under a constant gas flow rate at quasi-static regime

Author:

O'Coin Daniel1ORCID,Ling Hangjian1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Massachusetts Dartmouth , Dartmouth, Massachusetts 02747, USA

Abstract

In this work, we experimentally studied bubble formation on the superhydrophobic surface (SHS) under a constant gas flow rate and at quasi-static regime. SHS with a radius RSHS ranging from 4.2 to 19.0 mm was used. We observed two bubbling modes A and B, depending on RSHS. In mode A for small RSHS, contact line fixed at the rim of SHS, and contact angle (θ) initially reduced, then maintained as a constant, and finally increased. In mode B for large RSHS, contact line continuously expanded, and θ slowly reduced. For both modes, during necking, contact line retracts, and θ was close to the equilibrium contact angle. Moreover, the pinch-off of bubble at the early stage was similar to the pinch-off of bubble from a nozzle and followed a power-law relation Rneck ∼ τ0.54, where Rneck is the minimum neck radius and τ is the time to detaching. Furthermore, we calculated the forces acting on the bubble and found a balance between one lifting force (pressure force) and two retaining forces (surface tension force and buoyancy force). Last, we found a waiting time for a finite volume to be detected for large RSHS. The detached volume was well predicted by Tate volume, which was derived based on balance between buoyancy and surface tension and was a function of bubble base radius.

Funder

Directorate for Engineering

Office of Naval Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3