Nonideal Compressible Fluid Dynamics of Dense Vapors and Supercritical Fluids

Author:

Guardone Alberto1,Colonna Piero2,Pini Matteo2,Spinelli Andrea3

Affiliation:

1. Department of Aerospace Science and Technology, Politecnico di Milano, Milano, Italy

2. Propulsion and Power, Aerospace Engineering, Delft University of Technology, Delft, The Netherlands;

3. Department of Energy, Politecnico di Milano, Milano, Italy

Abstract

The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal gases. Due to nonideal fluid thermodynamic properties, unconventional gas dynamic effects are possible, including nonclassical rarefaction shock waves and the nonmonotonic variation of the Mach number along steady isentropic expansions. This review provides a comprehensive theoretical framework of the fundamentals of nonideal compressible fluid dynamics (NICFD). The relation between nonideal gas dynamics and the complexity of the fluid molecules is clarified. The theoretical, numerical, and experimental tools currently employed to investigate NICFD flows and related applications are reviewed, followed by an overview of industrial processes involving NICFD, ranging from organic Rankine and supercritical CO2 cycle power systems to supercritical processes. The future challenges facing researchers in the field are briefly outlined.

Publisher

Annual Reviews

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3