Nonclassical wave propagation measurements in the high temperature vapor of $$\hbox {D}_{6}$$ with the asymmetric shock tube for experiments in rarefaction waves (ASTER)

Author:

Chandrasekaran Nitish,Michelis Theodoros,Mercier Bertrand,Falsetti Chiara,Colonna Piero

Abstract

AbstractA novel test setup called the asymmetric shock tube for experiments on nonideal rarefaction waves (ASTER) has been commissioned at Delft University of Technology. The ASTER, which works according to the principle of Ludwieg tubes, is designed to generate and measure the speed of small and finite amplitude waves propagating in the dense vapors of fluids formed by complex organic molecules, therefore in the nonideal compressible fluid dynamics regime. The ultimate goal of the associated research is to prove the existence of nonclassical gasdynamics. The setup consists of a high-pressure charge tube and a vacuum tank separated by a glass disk equipped with a breaking mechanism for rarefaction waves experiments. When the glass disk is broken, an expansion wave propagates into the tube in the direction opposite to the fluid flow. The propagation speed of this wave is measured using a time-of-flight method with the help of four fast-response pressure sensors placed equidistantly in the middle of the tube. The charge tube can withstand pressures and temperatures of up to 15 bar and 400$$^{\circ }\mathrm{C}$$ C . Preliminary rarefaction experiments were successfully conducted using dodecamethylcyclohexasiloxane, $$\hbox {D}_{6}$$ D 6 , as the working fluid and at pressures and temperatures of up to 9.4 bar and 372$$^{\circ }\mathrm{C}$$ C  , respectively. The results of an experiment featuring the initial state for which a theoretical model predicts the nonclassical acceleration of rarefaction waves show that the propagation is qualitatively different from that put into evidence by experiments for which the propagation is classic. Upcoming setup improvements and experimental campaigns are planned with the objective of experimentally verifying the existence of nonclassical gasdynamics. Graphical abstract

Funder

Dutch Organization for Scientific Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3