Modeling the Structure and Composition of Nanoparticles by Extended X-Ray Absorption Fine-Structure Spectroscopy

Author:

Frenkel Anatoly I.1,Yevick Aaron1,Cooper Chana1,Vasic Relja1

Affiliation:

1. Department of Physics, Yeshiva University, New York, New York 10016;, , ,

Abstract

Many metal clusters in the 1-nm size range are catalytically active, and their enhanced reactivity is often attributed to their size, structure, morphology, and details of alloying. Synchrotron sources provide a wide range of opportunities for studying catalysis. Among them, extended X-ray absorption fine-structure (EXAFS) spectroscopy is the premier method for investigating structure and composition of nanocatalysts. In this review, we summarize common methods of EXAFS analysis for geometric and compositional characterization of nanoparticles. We discuss several aspects of the experiments and analyses that are critical for reliably modeling EXAFS data. The most important are sample homogeneity, the width of the size and compositional distribution functions, and accounting for multiple-scattering contributions to EXAFS. We focus on the contribution of structural disorder and structural/compositional heterogeneity to the accuracy of three-dimensional modeling.

Publisher

Annual Reviews

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3