Parametrized ion-distribution model for extended x-ray absorption fine-structure analysis at high-energy-density conditions

Author:

Chin D. A.12ORCID,Nilson P. M.2ORCID,Ruby J. J.3ORCID,Bunker G.4,Ghosh M.5ORCID,Signor M. E.12ORCID,Bishel D. T.12ORCID,Smith E. A.12ORCID,Coppari F.3ORCID,Ping Y.3ORCID,Rygg J. R.126ORCID,Collins G. W.126ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Rochester 1 , Rochester, New York 14627, USA

2. Laboratory for Laser Energetics, University of Rochester 2 , Rochester, New York 14623-1299, USA

3. Lawrence Livermore National Laboratory 3 , Livermore, California 94550, USA

4. Department of Physics, Illinois Institute of Technology 4 , Chicago, Illinois 60616, USA

5. High Energy Density Science Division, SLAC National Accelerator Laboratory 5 , Menlo Park, California 94025, USA

6. Department of Mechanical Engineering, University of Rochester 6 , Rochester, New York 14627, USA

Abstract

Experiments today can compress solids near isentropically to pressures approaching 100 × 106 atmospheres; however, determining the temperature of such matter remains a major challenge. Extended x-ray absorption fine-structure (EXAFS) spectroscopy is one of the few techniques sensitive to the bulk temperature of highly compressed solid matter, and the validity of this temperature measurement relies on constraining the local ion structure from the EXAFS spectrum. At high-energy-density (HED) conditions, the local ion structure often becomes distorted, which must be accounted for during the EXAFS analysis. Described here is a technique, using a parametrized ion-distribution model to directly analyze EXAFS spectra that provides a better constraint on the local structure than traditional second- or third-order cumulant expansion techniques at HED conditions. The parametrized ion-distribution model is benchmarked by analyzing EXAFS spectra from nickel molecular-dynamics simulations at ∼100 GPa and shown to provide a 10%–20% improvement in constraining the cumulants of the true ion distribution.

Funder

National Nuclear Security Administration

National Science Foundation

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3