Too Many Cooks? Intrinsic and Synaptic Homeostatic Mechanisms in Cortical Circuit Refinement

Author:

Turrigiano Gina1

Affiliation:

1. Department of Biology, Center for Complex Systems, and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454;

Abstract

Maintaining the proper balance between excitation and inhibition is critical for the normal function of cortical circuits. This balance is thought to be maintained by an array of homeostatic mechanisms that regulate neuronal and circuit excitability, including mechanisms that target excitatory and inhibitory synapses, and mechanisms that target intrinsic neuronal excitability. In this review, I discuss where and when these mechanisms are used in complex microcircuits, what is currently known about the signaling pathways that underlie them, and how these different ways of achieving network stability cooperate and/or compete. An important challenge for the field of homeostatic plasticity is to assemble our understanding of these individual mechanisms into a coherent view of how microcircuit stability is maintained during experience-dependent circuit refinement.

Publisher

Annual Reviews

Subject

General Neuroscience

Cited by 587 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3