Mechanical Control of Magnetic Order: From Phase Transition to Skyrmions

Author:

Wang Jie1

Affiliation:

1. Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China;

Abstract

Topological magnetic structures such as domain walls, vortices, and skyrmions have recently received considerable attention because of their potential application in advanced functional devices. Tuning the magnetic order of the topological structures can result in emergent functionalities and thus lead to novel application concepts. Strain engineering is one promising approach with which to control magnetic order via magneto-elastic coupling in ferromagnets. By introducing lattice deformation, mechanical strain not only can trigger the magnetic phase transition but also can be used to manipulate topological magnetic orders in ferromagnets. The present review is based on magneto-elastic coupling as the coherent basis of the mechanical control of different topological magnetic orders. Following a description of magneto-elastic coupling, we review recent progress in the mechanical control of the magnetic phase transition and topological structures, including magnetic domain walls, vortices, and skyrmions. The review concludes by briefly addressing the future research directions in the field.

Publisher

Annual Reviews

Subject

General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3