Dynamic behavior of skyrmion collision: spiral and breath

Author:

Shi ShengbinORCID,Zhao YunhongORCID,Sun JiajunORCID,Hou XuORCID,Zhou Haomiao,Wang JieORCID

Abstract

Abstract A magnetic skyrmion is a particle-like topological soliton, which is an ideal candidate for developing high-density storage and logic devices due to its nonvolatility and tunability. In view of the particle motion characteristics of skyrmion, different skyrmions in a material inevitably interact in the form of short-range repulsion and long-range attraction. In this work, the dynamic characteristics of skyrmion collision in a ferromagnetic Co thin film are investigated by using micromagnetic simulations. It is found that the dynamic behavior of skyrmion after collision is highly dependent on the size of the strip, the initial velocity of skyrmion and magnetic damping constant. For the collision of two skyrmions, when the strip width exceeds the critical value, the skyrmions form a pair and rotate counterclockwise in the form of spiral and breath. It is interesting that the rotation and breath of skyrmions keep the same periodicity under the negligible damping, and the frequency increases with the increase of the initial velocity of skyrmion. Further, the collision of a system of three skyrmions reveals that they interact in pairs to form closed periodic trajectories. The results of the present work not only give an insight into the multi-skyrmion dynamics, but also provide guidance for the development of spintronic devices based on multi-skyrmion motion.

Funder

Key Research Project of Zhejiang Laboratory

National Natural Science Foundation of China

University Grants Committee of Hong Kong

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skyrmion based universal logic gates and computation operation;Journal of Physics D: Applied Physics;2024-03-19

2. Annihilation mechanisms for interacting skyrmions in magnetic nanowire;Journal of Physics D: Applied Physics;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3