Affiliation:
1. National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
Abstract
Scanning transmission electron microscopy (STEM) is one of the most powerful characterization tools in materials science research. Due to instrumentation developments such as highly coherent electron sources, aberration correctors, and direct electron detectors, STEM experiments can examine the structure and properties of materials at length scales of functional devices and materials down to single atoms. STEM encompasses a wide array of flexible operating modes, including imaging, diffraction, spectroscopy, and 3D tomography experiments. This review outlines many common STEM experimental methods with a focus on quantitative data analysis and simulation methods, especially those enabled by open source software. The hope is to introduce both classic and new experimental methods to materials scientists and summarize recent progress in STEM characterization. The review also discusses the strengths and weaknesses of the various STEM methodologies and briefly considers promising future directions for quantitative STEM research.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献