Affiliation:
1. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel;,
2. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;,
Abstract
Recent advances in creating complex oxide heterostructures, interfaces formed between two different transition-metal oxides, have heralded a new era of materials and physics research, enabling a uniquely diverse set of coexisting physical properties to be combined with an ever-increasing degree of experimental control. These systems have exhibited varied phenomena such as superconductivity, magnetism, and ferroelasticity, all of which are gate tunable, demonstrating their promise for fundamental discovery and technological innovation. To fully exploit this richness, it is necessary to understand and control the physics on the smallest scales, making the use of nanoscale probes essential. Using the prototypical LaAlO3/SrTiO3 interface as a guide, we explore the exciting developments in the physics of oxide-based heterostructures, with a focus on nanostructures and the nanoscale probes employed to unravel their complex behavior.
Subject
General Materials Science
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献