Affiliation:
1. Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA;
Abstract
The functional unit in skeletal muscle is the multinucleated myofiber, which is composed of parallel arrays of microfibrils. The myofiber and sarco-mere structure of skeletal muscle are established during embryogenesis, when mononuclear myoblast cells fuse to form multinucleated myotubes and develop into muscle fibers. With the myoblasts permanently unable to enter a proliferative state again after they fuse to form the multinucleated myotube, postnatal myofiber growth, muscle homeostasis, and myofiber regeneration are dependent on a myogenic stem cell, the satellite cell. Because the satellite cell is a partially differentiated stem cell controlling the state of skeletal muscle structure throughout the life of the bird, it can impact muscle development and structure, growth, and regeneration and, subsequently, meat quality. When myofibers are damaged, muscle repair is dependent on the satellite cells. Regenerated myofibers after the repair process should be similar to the original muscle fiber. Despite significant improvements in meat-type birds, degenerative myopathies have arisen. In many of these degenerative breast muscle myopathies, like Wooden Breast, satellite cell–mediated regeneration of muscle is suppressed. Thus, the biological function of avian myogenic satellite cells and their influence on cellular mechanisms affecting breast muscle development and growth, function during degenerative myopathies, and meat quality are discussed.
Subject
General Veterinary,Genetics,Animal Science and Zoology,Biotechnology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献