Improving Predictions of Salt Marsh Evolution Through Better Integration of Data and Models

Author:

Wiberg Patricia L.1,Fagherazzi Sergio2,Kirwan Matthew L.3

Affiliation:

1. Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, USA;

2. Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA;

3. Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA;

Abstract

Salt marshes are recognized as valuable resources that are threatened by climate change and human activities. Better management and planning for these ecosystems will depend on understanding which marshes are most vulnerable, what is driving their change, and what their future trajectory is likely to be. Both observations and models have provided inconsistent answers to these questions, likely in part because of comparisons among sites and/or models that differ significantly in their characteristics and processes. Some of these differences almost certainly arise from processes that are not fully accounted for in marsh morphodynamic models. Here, we review distinguishing properties of marshes, important processes missing from many morphodynamic models, and key measurements missing from many observational studies. We then suggest some comparisons between models and observations that will provide critical tests and insights to improve our ability to forecast future change in these coastal landscapes.

Publisher

Annual Reviews

Subject

Oceanography

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3