Assessing the potential long-term effects of sea-level rise on salt marsh’s coastal protective capacity under different climate pathway scenarios

Author:

de Souza de Lima Andre,Cassalho Felicio,Miesse Tyler W.,Henke Martin,Canick Michelle R.,Ferreira Celso M.

Abstract

AbstractSalt marshes act as natural barriers that reduce wave energy during storm events and help protect coastal communities located in low-lying areas. This ecosystem can be an important asset for climate adaptation due to its particular capability of vertically accrete to adjust to long-term changes in water levels. Therefore, understanding marsh protection benefits thresholds in the face of sea-level rise (SLR) is important for planning future climate adaptation. In this context, the main goal of this manuscript is to examine how the storm protection benefits provided by salt marshes might evolve under SLR projections with different probability levels and emission pathways. In this study, a modeling framework that employs marsh migration predictions from the Sea Level Affecting Marshes Model (SLAMM) as parameterization into a hydrodynamic and wave model (ADCIRC + SWAN) was utilized to explicitly represent wave attenuation by vegetation under storm surge conditions. SLAMM predictions indicate that the SLR scenario, a combination of probability level and emission pathways, plays a substantial role in determining future marsh migration or marsh area loss. For example, results based on the 50% probability, stabilized emissions scenario show an increase of 45% in the marsh area on Maryland’s Lower Eastern Shore by 2100, whereas Dorchester County alone could experience a 75% reduction in total salt marsh areas by 2100 under the 1% probability, growing emissions scenario. ADCIRC + SWAN results using SLAMM land cover and elevation outputs indicate that distinct temporal thresholds emerge where marsh extent sharply decreases and wave heights increase, especially after 2050, and exacerbates further after 2080. These findings can be utilized for guiding environmental policies and to aid informed decisions and actions in response to SLR-driven environmental changes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3