Environmental Burden of Traditional Bioenergy Use

Author:

Masera Omar R.1,Bailis Rob2,Drigo Rudi3,Ghilardi Adrian4,Ruiz-Mercado Ilse1

Affiliation:

1. Institute for Ecosystems Research and Sustainability,

2. Yale School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511;

3. Independent consultant;

4. Center for Environmental Geography Research, National Autonomous University of Mexico, Campus Morelia, Morelia 58190, Michoacán, Mexico;, ,

Abstract

Approximately 40% of the global population relies on traditional bioenergy, accounting for 9% of global energy use and 55% of global wood harvest. However, knowledge about the environmental impacts of traditional bioenergy is fragmented. This review addresses several persistent questions and summarizes recent research on land cover change (LCC) and pollution emissions resulting from traditional bioenergy use. We also review recent studies analyzing transitions from traditional bioenergy to cleaner stoves and fuels. Between 27 and 34% of the wood fuel harvest in 2009 was unsustainable, with large geographical variations. Almost 300 million rural people live in wood fuel “hotspots,” concentrated in South Asia and East Africa, creating risks of wood-fuel-driven degradation. Different fuels and stoves show variation in climate-forcing emissions. Many, but not all, nontraditional stoves result in lower emissions than traditional models. Traditional bioenergy makes substantial contributions to anthropogenic black carbon (BC) emissions (18–30%) and small contributions to total anthropogenic climate impacts (2–8%). Transitions from traditional fuels and devices have proven difficult. Stacking, i.e., the use of multiple devices and fuels to satisfy household energy needs, is common, showing the need to shift stove interventions from the common approach that promotes one fuel and one device to integrated approaches that incorporate deep understanding of local needs and practices, and multiple fuels and devices, while monitoring residual use of traditional technologies.

Publisher

Annual Reviews

Subject

General Environmental Science

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3