Affiliation:
1. McKetta Department of Chemical Engineering, Center for Energy and Environmental Resources, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758;
Abstract
Ion exchange membranes are used in various membrane-based processes (e.g., electrodialysis, fuel cells). Charged solute transport is largely governed by the charged groups on the polymer backbone. In this review, fundamental relationships describing salt permeability and ionic conductivity, as well as water permeability, in charged polymers are developed within the framework of the Nernst-Planck and solution-diffusion models. The influence of fixed charge groups and polymer structure on water sorption and diffusion is discussed. Current understanding of ion partitioning in charged polymers, focusing on the use of thermodynamic models (i.e., Donnan theory) to describe such phenomena, is summarized. Ion diffusivity data from the literature are interpreted using a model developed by Mackie and Meares to assess relative and absolute effects of the polymer and fixed charge groups on ion diffusivity. Furthermore, membrane requirements for several important technologies are listed. Knowledge gaps and opportunities for fundamental research are also discussed.
Subject
Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献