Donnan equilibrium in charged slit-pores from a hybrid nonequilibrium molecular dynamics/Monte Carlo method with ions and solvent exchange

Author:

Kim Jeongmin1ORCID,Rotenberg Benjamin23ORCID

Affiliation:

1. Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH) 1 , Naju 58330, Republic of Korea

2. Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX 2 , F-75005 Paris, France

3. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459 3 , 80039 Amiens Cedex, France

Abstract

Ion partitioning between different compartments (e.g., a porous material and a bulk solution reservoir), known as Donnan equilibrium, plays a fundamental role in various contexts such as energy, environment, or water treatment. The linearized Poisson–Boltzmann (PB) equation, capturing the thermal motion of the ions with mean-field electrostatic interactions, is practically useful to understand and predict ion partitioning, despite its limited applicability to conditions of low salt concentrations and surface charge densities. Here, we investigate the Donnan equilibrium of coarse-grained dilute electrolytes confined in charged slit-pores in equilibrium with a reservoir of ions and solvent. We introduce and use an extension to confined systems of a recently developed hybrid nonequilibrium molecular dynamics/grand canonical Monte Carlo simulation method (“H4D”), which enhances the efficiency of solvent and ion-pair exchange via a fourth spatial dimension. We show that the validity range of linearized PB theory to predict the Donnan equilibrium of dilute electrolytes can be extended to highly charged pores by simply considering renormalized surface charge densities. We compare with simulations of implicit solvent models of electrolytes and show that in the low salt concentrations and thin electric double layer limit considered here, an explicit solvent has a limited effect on the Donnan equilibrium and that the main limitations of the analytical predictions are not due to the breakdown of the mean-field description but rather to the charge renormalization approximation, because it only focuses on the behavior far from the surfaces.

Funder

H2020 European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3