Segregation Phenomena at Thermally Grown Al2O3/Alloy Interfaces

Author:

Hou P.Y.1

Affiliation:

1. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;

Abstract

Experimental results on S segregation at growing Al2O3/alloy interfaces are reviewed for binary FeAl, NiAl alloys, and ternary alloys with additions of Cr, Pt, or a reactive element, such as Zr, Hf, or Y. The segregation behavior is thermodynamic in nature, but the segregation energy can change not only with alloying elements but also with oxidation time and temperature as the oxide growth process changes. Although reactive elements are capable of eliminating interfacial S segregation, they do not stop such segregation to alloy surfaces. The segregation of a reactive element at the interface further strengthens the interfacial bonding. Cosegregation of S and Cr can occur, resulting in higher levels of S at the interface. Pt usually suppresses S segregation, but this effect can be easily overwhelmed by S-Cr cosegregation. Synergisms between alloying elements and how they affect segregation, as well as the relationship between segregation and the oxidation process, are areas that demand further investigation.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3