Unpacking β: Within-Host Dynamics and the Evolutionary Ecology of Pathogen Transmission

Author:

Antolin Michael F.1

Affiliation:

1. Department of Biology, Colorado State University, Fort Collins, Colorado 80523;

Abstract

Rather than being fixed, pathogen transmission varies and is thus an object of natural selection. I examine how opportunities for selection on pathogen transmission depend on (a) pathogen fitness, (b) genetic variability, and (c) forces acting at within- and between-host levels. The transmission rate, β, influences processes such as epidemic spread, postepidemic fade-outs, and low-level persistence. Complexity of infection processes within hosts leads to different transmission rates among hosts and between types of pathogens (viruses, bacteria, eukaryotic Protozoa). Generality emerges, however, by “unpacking” β into within- and between-host opportunities for selection. This is illustrated by evolutionary biology of the bacterium Yersinia pestis, which causes plague in mammals, remains highly virulent and is transmitted by multiple routes, including fleas and direct contacts with infected hosts. The strength of within-host selection is manifested through infectivity, replication, pathogenicity, and dissemination from hosts. At the between-host level, responses to selection are less predictable because of environmental variation, whereas vector-borne transmission (usually by arthropods) provides additional opportunities for selection and trade-offs between vectors and hosts. In subdivided host populations, selection favors transmission before local pathogen extinction occurs, but key components (e.g. infectious periods of hosts) are determined by within-host dynamics. Pathogen transmission is often viewed in the context of transmission-virulence trade-offs, but within-host dynamics may cause host damage unrelated to transmission, and thus transmission-virulence trade-offs are not universal.

Publisher

Annual Reviews

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3